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ABSTRACT 

We consider the problem of radiative transfer in a plane-parallel atmosphere which 
absorbs radiation and scatters it isotropically, there being a continuous distribution 
of primary internal sources of radiation. Our aim is to produce an effective numerical 
technique for calculating the internal intensity and the source functions. A major 
consideration is the computer’s ability to solve initial-value problems for large sys- 
tems of ordinary differential equations. We derive new differential-integral equations 
for the internal intensity at a fixed point and direction, and the source function at a 
fixed point, the new independent variable being the thickness of the atmosphere. Using 
standard quadrature techniques, we approximate these equations by systems of ordi- 
nary differential equations whose numerical treatment is straightforward. This work 
may be viewed as a new approach to the study of integral equations and linear unstable 
two-point boundary-value problems. 

I. INTRODUCTION 

Radiative transfer by an emitting, scattering, and absorbing atmosphere is 
one of the central topics in meteorology. It also appears in the astrophysical 
problems of stellar spectra and diffusion of radiation in the galaxy, and it is closely 
related to problems of neutron transport and thermal transport. The equations 
which we develop in this paper lead to an effective computational procedure 
for the determination of internal intensities and source functions, regardless 
of the nature of the geometric variation of emission rate within a slab at- 
mosphere. 

We consider anew the problem of determining the radiation field produced 
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within a finite homogeneous slab which both absorbs radiation and scatters it 
isotropically, isotropic sources of radiation being located in the slab, and their 
strengths depending only on the altitude above the bottom. 

The classical approaches to this problem [l]-[3] involve solving a two-point 
boundary-value problem for the transport equation (a differential-integral equa- 
tion) or solving a singular integral equation for the source function, Neither of 
these is especially attractive from the vewpoint of modern computation. Our aim 
is to show how to formulate initial-value problems for both the internal intensity 
function and the source function. Basically, our approach is to view the internal 
intensity and source functions as functions of the slab thickness, position within 
the slab being a fixed parameter. Related previous experience indicates the com- 
putational effectiveness of the proposed methods [4]-161. 

It is important to discuss the relation between our approach and those of 
Carlson, Chandrasekhar-Wick, Sobolev, Ueno, and Busbridge, but this would 
require much additional investigation. Our ideas grew out of earlier work of Am- 
barzumian and Chandrasekhar, and developed within a group which includes 
Bellman, Wing, Ueno, and Preisendorfer. The physical situation we consider is 
described by Eq. (38), the integral equation for the source function. However, 
part of our objective is to show that we can derive the basic equations directly 
from the physical situation without going through the transport equation at all. 
That this can be done seems both philosophically and computationally interesting 
and not generally known. 

II. PHYSICAL SITUATION [l], [2] 

Consider a homogeneous slab of optical thickness x which absorbs radiation 
and reradiates it isotropically. The albedo for single scattering is denoted by il. 
Located within the slab are isotropic sources of radiation. The production of 
energy per unit volume per unit solid angle per unit time at altitude y is B(y), 
0 5 y 5 X. A radiation field is created by the emissions and multiple scattering 
of this emitted radiation. 

We wish to determine the intensity of radiation at the fixed altitude t, 0 5 t 5 x, 
which is propagating in a direction whose direction cosine with respect to the 
upward vertical is V. We denote this intensity by Z = Z(t, V; x), which draws 
attention to the fact that Z is to be considered a function of t, V, and x, the 
optical thickness. As usual, the intensity at a particular point for a particular 
direction is the energy per unit time per unit normal area per unit solid angle 
DH31. 
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III. THE BASIC EQUATION 

Let us first introduce the functions A(x) and b(t, V; X) in the following manner 

b(t, V; X) = total intensity at altitude t in a direction whose direction cosine 
with respect to the upward vertical is I/, the slab extending from 
0 to x, and due to incident radiation at the top in all down- 
ward directions of one unit of energy per unit of horizontal 
area per unit of solid angle per unit of time. (1) 

A(x) = total production of scattered radiation per unit of volume 
per unit of solid angle per unit of time at the top of the slab 
extending from 0 to x and due to the presence of all the in- 
ternal sources in the slab. (2) 

Then we consider the slab extending from 0 to x and add a slab of thickness A 
to the top. This results in a change in the intensity at the altitude t and in the 
direction with direction cosine V, due to the production of radiation in the slab 
added. We may write 

z(t, u; x + 0) = z(t, v; x) + A(x)&(t, v; x) + o(d). (3) 

The limiting form of this equation is 

I&, 0; x) = A(x)b(t, v; x), (4) 

which is our basic relation. By also introducing the emergent intensity function 

e(v, x) = 1(x, u; x) 

= the intensity of the radiation emerging from the top of the slab 
extending from 0 to x in a direction with direction cosine P and 
due to all the internal sources, 0 < v 5 1, (5) 

we can express A(x) in the form 

A(x) = B(x) + @d, x)(d)-9’ (--$) 276 do’, 

Atx) = B(x) + 4 Ji e(v’, x) dv’. 
( 1 

(6) 

(7) 
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IV. ADDITIONAL EQUATIONS [l], [2], [6]-[7] 

Presently we know that 1(t, u; x) satisfies the differential equation 

G=b(f,u;x) [B(x)+ (G) j;e(u’,x)du~]. (8) 

In the interest of brevity, we now simply reproduce the differential equations for 
b and e. These involve various other functions, h, X, Y, J, and their equations 
are also given: 

h(t, u; x) I:, Y(u’, x) + + u-l [b(r, v; x) - 2 j;J(t; x, u’) T], (9) 

b(t, v; x) j: Y(u,’ x) $, 

Y(u, x) jr Y(u’, x) q, 

r, = - u-lY(u, x) + 

Jz = - u-lJ(t; x, u) 

e x= - u-le + B(x)u-‘X(u, x) + (5) X(u, x)u-l 1: e(u’, x)dv’. (14) 

The functions b and e have been defined earlier. The functions X and Y are Chan- 
drasekhar’s functions [l], [5]. The function J(t, x, U) is the source function [2], 
[6]. (Note that t refers to optical altitude rather than depth.) The remaining func- 
tion h has the same definition as b, except that the isotropic sources are at the bot- 
tom of the slab. 

V. NUMERICAL TECHNIQUE 

We use the method of finite ordinates to approximate the integrals occurring 
in Eqs. (8)-(14). In this way we obtain an approximating system of ordinary dif- 
ferential equations subject to known initial conditions. We introduce, for example, 

xi(x) = X(q, x), i = 1, 2, . . . . N, (15) 

where ui is the ith root of the Nth-order shifted Legendre polynomial P,(l - 2x). 
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The polynomials P,(l - x), P,(l - 2x), . . . are orthogonal on the interval (0, 1). 
The functions u&x), ei(x), etc., are introduced similarly. Let the corresponding 
Christoffel weights for Gaussian quadrature of order N be wi, i = 1, 2, . . . . N. 
For x in the interval 0 I x 5 t we consider the system of ordinary differential 
equations and initial conditions 

4 = (-$i il (-y-), 

Pi = - u,‘J$ + ($Xi jl (yq, 

(16) 

1 
( ) 

N 
ei = - u;'ei + B(X)U-lXi + 2 X$.C1 C f?jWj, (18) 

i=l 

Xi(O) = 1, (19) 

Y&9 = 1, (20) 

ei(0) = 0, (21) 

where i = 1, 2, . . . . N, and the dot indicates differentiation with respect to x. 
This system of 3N ordinary differential equations and initial conditions is inte- 
grated numerically for 0 _( x 5 t. At x = t, to the system of Eqs. (16)-( 18) 
we adjoin the N + 3 equations 

Ji = - u-14 + (;)xi jgl (A$), i = 1, 2, . . . . N, (22) 

and 

(23) 

(24) 

(25) 

Based on previous computational experience [6], and in view of the form of 
Eq. (24), we limit ourselves to 

v <o, (26) 

that is, to downward directions, to avoid numerical instability. For “initial con- 
ditions” at x = t, we have 
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i = 1, 2, . . . . N, 

Z(f) = 0, (28) 

b(t) = - v-l, v <o, (29) 

h(t) = 0. (30) 

The resulting system of 4N + 3 equations is integrated from x = t to x = x,, 
= desired thickness of slab. In this way we obtain the intensity at the fixed al- 
titude t in a fixed direction with direction cosine v, v < 0, for a range of slab 
thicknesses t I x _( x,,. For N = 7 and a grid size of 0.005, employing an Adams- 
Moulton integration scheme, the time consumed on an IBM 7044 would be in 
the order of a few seconds to a minute. 

When v > 0, we make use of the relations 

b(t,v;x)=h(x-t, -v;x), (31) 

h(t, v; x) = b(x - t, - 0; x), (32) 

so that we may confine our calculation of b and h to nonpositive values of v. 
This will be explained in more detail in a paper soon to be published. 

VI. SOURCE FUNCTION J* 

We now consider the source function J*(t; x), which is defined by the relation 
VI, PI 

J*(t ; X) = the production of scattered radiation per unit volume per unit 
solid angle per unit time at the altitude t in the slab extending 
from altitude 0 to x and due to the sources B(y), 0 5 y 5 x. (33) 

We add a slab of thickness d to the top and note the change that takes place in 
the value of J* at the fixed altitude t, t < x. This leads to the equation 

du’ 
J+(t; x + A) = J*(t; x) + A( * 2 1: J(t; x, u’) - u’ + 44, (34) 

which, in the limit as A -+ 0, becomes 

J,* = A(x) - 2 j:, J(t; x, u’) $. (35) 
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For numerical purposes we approximate this equation by the ordinary differen- 
tial equation 

The initial condition at x = 2 is 

J*(t) = B(t) + 5 t w&t). ( 1 j-1 

(36) 

(37) 

Ordinarily the source function J*(t), 0 5 t _( x, is characterized as the solution 
of a Fredholm integral equation 

J*(t) = B(t) + ; 11 J”(s)E,( / t - s J)rls, (38) 

where E,(x) is the exponential integral function 

E,(x) = Ji exp(- x/z) -$-, x > 0. (39) 

In effect, we have shown how to solve this equation by integrating a system of 
ordinary differential equations subject to known initial conditions. 

Once the source function J* is known, the intensity function can be determined 
through use of the usual integral relations [l], [2]. 

VII. DISCUSSION 

The method presented for the numerical determination of internal and emergent 
radiation fields generalizes along many lines. It is clear that we may consider 
inhomogeneous slabs, spherical shells [8], and anisotropic scattering. In addition, 
we may use the ability to solve these direct problems to attack inverse problems, 
in which both internal and external radiation field measurements may be made 
and in which we wish to estimate properties of the medium [9]. We shall discuss 
these and related matters in subsequent papers. The reader may also wish to 
consult [lo], where these matters are approached through the study of integral 
equations. 
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